Sample Question Paper - 31 Mathematics-Standard (041) Class- X, Session: 2021-22 TERM II Time Allowed: 2 hours Maximum Marks: 40 #### **General Instructions:** - 1. The question paper consists of 14 questions divided into 3 sections A, B, C. - 2. All questions are compulsory. - 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions. - 4. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question. - 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions. #### **SECTION - A** 1. Two numbers differ by 3 and their product is 504. Find the numbers. OR For what values of *n*, the equation $2x^2 - nx + n = 0$ has coincident roots? - **2.** Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5. - 3. The height of a pillar is 8 m. What is the length of its shadow, when sun's altitude is 30°? - **4.** Find the mean of the following distribution : | Class | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 | |-----------|-----|------|-------|-------|-------| | Frequency | 7 | 5 | 10 | 12 | 2 | 5. A tower stands vertically on the ground. From a point on the ground which is 25 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 45°. Find the height (in meters) of the tower. OR The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 45°. Find the height of the tower (in metres). **6.** Find the mode of the following data: | Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 | |-----------|------|-------|-------|-------|-------|-------|-------|-------| | Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 | ### **SECTION - B** 7. A heap of rice is in the form of a cone of base diameter 24 m and height 3.5 m. Find the volume of the rice. How much canvas cloth is required to just cover the heap? 8. An electrician has to repair an electric fault on a pole of height 7 m. He needs to reach a point 2.2 m below the top of the pole to undertake the repair work. What should be the length of the ladder that he should use which, when inclined at an angle of 60° to the horizontal, would enable him to reach the required position? Also, how far from the foot of the pole should he place the foot of the ladder? OR A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and angle of depression of the base of the hill as 30°. Find the horizontal distance of the hill from the ship and height of the hill. - 9. A metallic cylinder has radius 3 cm and height 5 cm. To reduce its weight, a conical hole is drilled in the cylinder. The conical hole has a radius of $\frac{3}{2}$ cm and its depth is $\frac{8}{9}$ cm. Calculate the ratio of the volume of metal left in the cylinder to the volume of metal taken out in conical shape. - **10.** In the given figure, from an external point *P*, two tangents *PT* and *PS* are drawn to a circle with centre *O* and radius *r*. If OP = 2r, show that $\angle OTS = \angle OST = 30^{\circ}$. #### **SECTION - C** 11. Two pipes running together can fill a tank in 12 mins. If one pipe takes 10 mins less than twice the other to fill the tank. Find the time in which each pipe would fill the tank. OR Prove that the equation $x^2(a^2 + b^2) + 2x(ac + bd) + (c^2 + d^2) = 0$ has no real roots, if $ad \neq bc$. 12. Kanika was given her pocket money on Jan 1st, 2008. She puts ₹ 1 on Day 1, ₹ 2 on Day 2, ₹ 3 on Day 3, and continued doing so till the end of the month, from this money into her piggy bank. She also spent ₹ 204 of her pocket money, and found that at the end of the month she still had ₹ 100 with her. How much was her pocket money for the month? ## Case Study - 1 13. Following are questions of section-A in assessment test on circle that Eswar attend last month in school. He scored full marks in this section. Answer the questions and check your score if 2 marks is allotted to each question. - (i) If two tangents *AB* and *CD* drawn to a circle with centre *O* at *P* and *Q* respectively, are parallel to each other, then show that *PQ* is a diameter of a circle. - (ii) In the given figure, is PQ a tangent to both the circles? Case Study - 2 **14.** An inspector in an enforcement squad of electricity department visit to a locality of 100 families and record their monthly consumption of electricity, on the basis of family members, electronic items in the house and wastage of electricity, which is summarise in the following table. | Monthly Consumption (in kwh) | 0-
100 | 100-
200 | 200-
300 | 300-
400 | 400-
500 | 500-
600 | 600-
700 | 700-
800 | 800-
900 | 900-
1000 | |------------------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------| | | 100 | 200 | 300 | 400 | 300 | 600 | 700 | 800 | 900 | 1000 | | Number of families | 2 | 5 | х | 12 | 17 | 20 | у | 9 | 7 | 4 | Based on the above information, answer the following questions. - (i) If the median of the above data is 545, then find the value of x. - (ii) Find the average monthly consumption of a family of this locality approximately. #### **Solution** #### **MATHEMATICS STANDARD 041** #### Class 10 - Mathematics 1. Let one number be x. \therefore Other number be x + 3. According to question, x(x + 3) = 504 $$\Rightarrow x^2 + 3x - 504 = 0 \Rightarrow x^2 + 24x - 21x - 504 = 0$$ $$\Rightarrow x(x+24) - 21(x+24) = 0 \Rightarrow (x+24)(x-21) = 0$$ $$\Rightarrow x + 24 = 0 \text{ or } x - 21 = 0 \Rightarrow x = -24 \text{ or } x = 21$$ When x = -24, numbers are -24 and -24 + 3 = -21 When x = 21, numbers are 21 and 21 + 3 = 24. OR We have, $2x^2 - nx + n = 0$ Here, a = 2, b = -n and c = n. $$\therefore$$ $D = b^2 - 4ac = (-n)^2 - 4(2)(n) = n^2 - 8n = n(n-8)$ Now, the given equation has coincident roots *i.e.*, equal roots, so $D = 0 \Rightarrow n(n-8) = 0 \Rightarrow n = 0$ or n = 8 #### 2. Steps of construction: **Step-I**: Draw a line segment AB = 8 cm. **Step-II**: Taking point *A*, draw a ray AX below the line segment AB making an acute angle $\angle BAX$. **Step-III**: Mark 9 points A_1 , A_2 ,, A_9 on AX such that $AA_1 = A_1A_2 = A_2A_3$ and so on. **Step-IV**: Join A_9B . **Step-V**: Now, draw a parallel line, from point $A_4(A_4B' || A_9B)$ which intersect AB at B'. Thus, AB is divided internally in the ratio 4:5. 3. Let AB be the pillar of height 8 m and BC be the length of its shadow. 8 m In right $\triangle ABC$, $$\tan 30^\circ = \frac{AB}{BC} \Rightarrow \frac{1}{\sqrt{3}} = \frac{8}{BC}$$ Thus, length of the shadow of the pillar is $8\sqrt{3}$ m. 4. | Class | Class | Frequency | $f_i x_i$ | |-------|---------------|-------------------|------------------------| | | marks (x_i) | (f_i) | | | 0-6 | 3 | 7 | 21 | | 6-12 | 9 | 5 | 45 | | 12-18 | 15 | 10 | 150 | | 18-24 | 21 | 12 | 252 | | 24-30 | 27 | 2 | 54 | | | | $\Sigma f_i = 36$ | $\Sigma f_i x_i = 522$ | $$\therefore \text{ Mean} = \frac{\sum f_i x_i}{\sum f_i} = \frac{522}{36} = 14.5$$ 5. Let AB be the tower and C be the point on the ground 25 m away from the foot of the tower such that $\angle ACB = 45^{\circ}$. Now, In right $\triangle ABC$, $$\tan 45^\circ = \frac{AB}{BC} \implies 1 = \frac{AB}{25} \implies AB = 25 \text{ m}$$ Thus, the height of the tower is 25 m. OR Let *AB* be the tower and *P* be the point on the ground. In $$\triangle ABP$$, $\frac{AB}{BP} = \tan 45^{\circ}$ $$\Rightarrow \frac{AB}{30} = 1 \Rightarrow AB = 30 \text{ m}$$ **6.** From the given data, we observe that, highest frequency is 20, which lies in the class-interval 40-50. Here, l = 40, $f_1 = 20$, $f_0 = 12$, $f_2 = 11$, h = 10. $$\therefore \text{ Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$ $$= 40 + \left(\frac{20 - 12}{40 - 12 - 11}\right) \times 10$$ $$= 40 + \frac{80}{17} = 40 + 4.7 = 44.7$$ - 7. Given that a heap of rice is in the form of a cone. Height of a heap of rice (h) = 3.5 m and diameter of a heap of rice = 24 m - \therefore Radius of a heap of rice (r) = 12 m So, volume of rice = $$\frac{1}{3}\pi r^2 h$$ $$= \frac{1}{3} \times \frac{22}{7} \times 12 \times 12 \times 3.5 = 528 \text{ m}^3$$ Now, canvas cloth required to just cover heap of rice = Surface area of a heap of rice = πrl $$= \frac{22}{7} \times r \times \sqrt{r^2 + h^2} = \frac{22}{7} \times 12 \times \sqrt{(12)^2 + (3.5)^2}$$ $$= \frac{12 \times 22}{7} \times \sqrt{144 + 12.25} = \frac{12 \times 22}{7} \times \sqrt{156.25}$$ $$= \frac{12 \times 22}{7} \times 12.5 = 471.42 \text{ m}^2$$ Hence, 471.42 m^2 canvas cloth is required to just cover the heap. ## **8.** Let *AB* be the pole of height 7 m. Let at point *C*, the electrician has to do the repair work and *CD* be the ladder of length x m. Let AD = y m Here, $$AC = AB - CB$$ = 7 - 2.2 = 4.8 m In right $\triangle ADC$, tan $60^{\circ} = \frac{AC}{AD}$ $$\Rightarrow \sqrt{3} = \frac{4 \cdot 8}{v} \Rightarrow y = \frac{4 \cdot 8}{\sqrt{3}} = \frac{4.8 \times \sqrt{3}}{3} = 1.6 \times 1.732 = 2.77$$ and cosec $$60^{\circ} = \frac{CD}{AC} \Rightarrow \frac{2}{\sqrt{3}} = \frac{x}{4.8} \Rightarrow x = \frac{9.6}{\sqrt{3}}$$ $$\Rightarrow x = \frac{9.6 \times \sqrt{3}}{3} = 3.2 \times 1.732 = 5.54$$:. Length of ladder is 5.54 m and distance between foot of pole and foot of ladder is 2.77 m. #### OR Let *AB* be the hill and *C* be the position of man on the deck of a ship which is 10 m above water level. Then, $$CD = BE = 10 \text{ m}$$ In right $$\triangle BEC$$, $\frac{CE}{BE} = \cot 30^{\circ}$ $$\Rightarrow CE = BE \cdot \cot 30^{\circ}$$ $$\Rightarrow CE = 10 \times \sqrt{3} = 17.32 \text{ m}$$ In right $\triangle AEC$, $\frac{AE}{CE} = \tan 60^{\circ}$ $$\Rightarrow AE = CE \cdot \sqrt{3}$$ $$\Rightarrow AE = 10 \times \sqrt{3} \times \sqrt{3} = 30 \text{ m}$$:. Height of the hill, AB = AE + EB = (30 + 10)m = 40 m Distance of hill from the ship = CE = 17.32 m :. Volume of cylinder = $$\pi r_1^2 h_1 = \pi (3)^2 \times 5$$ $$=45\pi$$ cm³ Radius of cone, $$r_2 = \frac{3}{2}$$ cm; Height of cone, $$h_2 = \frac{8}{9}$$ cm Volume of cone = Volume of metal taken out $$= \frac{1}{3}\pi r_2^2 h_2$$ $$= \frac{1}{3}\pi \left(\frac{3}{2}\right)^2 \times \frac{8}{9} = \frac{2}{3}\pi \text{ cm}^3 \qquad \dots(i)$$ Volume of metal left in the cylinder = Volume of cylinder – Volume of cone $$=45\pi - \frac{2}{3}\pi = \frac{133\pi}{3}$$ $$\therefore \frac{\text{Volume of metal left in cylinder}}{\text{Volume of metal taken out}} = \frac{\frac{133\pi}{3}}{\frac{2}{3}\pi}$$ $$=\frac{133}{2}=133:2$$ #### **10.** In $\triangle OTP$, OT = r, OP = 2r [Given] $\angle OTP = 90^{\circ}$ [Radius is perpendicular to tangent at the point of contact] Let $$\angle TPO = \theta$$ $$\therefore \sin \theta = \frac{OT}{OP} = \frac{r}{2r} = \frac{1}{2}$$ $$\Rightarrow \theta = 30^{\circ}$$ $$\therefore$$ In $\triangle TOP$, $\angle TOP = 60^{\circ}$ [By angle sum property] [As $$\Delta$$'s are congruent] $$\angle TOP = \angle SOP$$ [A $\Rightarrow \angle SOP = 60^{\circ} :: \angle TOS = 120^{\circ}$ In $$\Delta OTS$$, $$OT = OS$$ (Radii of same circle) $$\therefore$$ $\angle OST = \angle OTS$ Now, $$\angle OTS + \angle OST + \angle SOT = 180^{\circ}$$ $$\Rightarrow 2\angle OST + 120^{\circ} = 180^{\circ}$$ $$\therefore$$ $\angle OTS = \angle OST = 30^{\circ}$ Hence Proved. 11. Let one pipe fill the tank in x mins, then the other pipe fill the tank in (2x - 10) mins. According to question, $$\frac{1}{x} + \frac{1}{2x - 10} = \frac{1}{12} \implies \frac{2x - 10 + x}{x(2x - 10)} = \frac{1}{12}$$ $$\Rightarrow (3x - 10) \ 12 = x(2x - 10) \Rightarrow 36x - 120 = 2x^2 - 10x$$ $$\Rightarrow 2x^2 - 46x + 120 = 0 \Rightarrow x^2 - 23x + 60 = 0$$ Here, $$a = 1$$, $b = -23$ and $c = 60$ $$b^2 - 4ac = (-23)^2 - 4(1)(60) = 529 - 240 = 289 > 0$$ $$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-23) \pm \sqrt{289}}{2(1)} = \frac{23 \pm 17}{2}$$ $$\Rightarrow x = \frac{23+17}{2} \text{ or } x = \frac{23-17}{2} \Rightarrow x = \frac{40}{2} \text{ or } x = \frac{6}{2}$$ $$\Rightarrow x = 20 \text{ or } x = 3$$ If x = 3, then 2x - 10 = 2(3) - 10 = -4, which is not possible. $\therefore x = 20$ Thus, one pipe fill the tank in 20 mins and other pipe fill the tank in 2(20) - 10 = 30 mins. #### OR We have, $$x^2(a^2 + b^2) + 2x(ac + bd) + (c^2 + d^2) = 0$$ Comparing the given equation with $Ax^2 + Bx + C = 0$, we have, $A = a^2 + b^2$, B = 2(ac + bd), $C = c^2 + d^2$ $$D = B^2 - 4AC = [2(ac + bd)]^2 - 4(a^2 + b^2)(c^2 + d^2)$$ $$= 4(a^2c^2 + b^2d^2 + 2acbd) - 4(a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2)$$ $$= 4[2acbd - a^2d^2 - b^2c^2] = -4[a^2d^2 + b^2c^2 - 2(ad)(bc)]$$ $$= -4(ad - bc)^2 < 0 \text{ if } ad \neq bc$$ Thus, given equation has no real roots if $ad \neq bc$. #### **12.** Let her pocket money be ₹ x. Now, she puts ₹ 1 on day 1, ₹ 2 on day 2, ₹ 3 on day 3 and so on till the end of the month, from this money into her piggy bank. *i.e.*, 1 + 2 + 3 + 4 + ... + 31, which forms an A.P. in which number of terms are 31 and first term, a = 1, common difference, d = 2 - 1 = 1 ∴ Sum of first 31 terms *i.e.*, $$S_{31} = \frac{31}{2} [2 \times 1 + (31 - 1) \times 1] \quad \left(:: S_n = \frac{n}{2} [2a + (n - 1)d] \right)$$ $$=\frac{31}{2}(2+30)=\frac{31\times32}{2}=31\times16=496$$ So, Kanika takes ₹ 496 till the end of the month from this money. Also, she spent ₹ 204 of her pocket money and found that at the end of the month she still has ₹ 100 with her. Now, according to the question, (x - 496) - 204 = 100 $\Rightarrow x - 700 = 100$ $\therefore x = ₹ 800$ Hence, ₹ 800 was her pocket money for the month. Two tangents of a circle are parallel only when they are drawn at ends of a diameter. So, PQ is the diameter of the circle. (ii) Here, the two circles have a common point of contact T and PQ is the tangent at T. So, PQ is the tangent to both the circles. #### **14.** We have the following table: | Class
interval | Frequency | Cumulative frequency | |-------------------|------------|----------------------| | 0-100 | 2 | 2 | | 100-200 | 5 | 7 | | 200-300 | x | 7 + x | | 300-400 | 12 | 19 + <i>x</i> | | 400-500 | 17 | 36 + x | | 500-600 | 20 | 56 + <i>x</i> | | 600-700 | y | 56 + x + y | | 700-800 | 9 | 65 + x + y | | 800-900 | 7 | 72 + x + y | | 900-1000 | 4 | 76 + x + y | | Total | 76 + x + y | | (i) Here, $$\frac{N}{2} = \frac{100}{2} = 50$$ Also, $$median = 545$$ [Given] :. Median class is 500-600. Now, median = $$l + \left(\frac{N/2 - c.f.}{f}\right) \times h$$ $$\Rightarrow 545 = 500 + \left(\frac{50 - (36 + x)}{20}\right) \times 100$$ $$\Rightarrow$$ 9 = 50 - 36 - $x \Rightarrow x = 5$ (ii) Since, $$x + y = 24$$ $$\Rightarrow$$ $y = 24 - 5 = 19$ Required average consumption $$50 \times 2 + 150 \times 5 + 250 \times 5 + 350 \times 12 + 450 \times 17$$ $$= \frac{+550 \times 20 + 650 \times 19 + 750 \times 9 + 850 \times 7 + 950 \times 4}{-}$$ $$=\frac{53800}{100}$$ = 538 kwh